Physiological and Proteomic Analyses of Saccharum spp. Grown under Salt Stress
نویسندگان
چکیده
Sugarcane (Saccharum spp.) is the world most productive sugar producing crop, making an understanding of its stress physiology key to increasing both sugar and ethanol production. To understand the behavior and salt tolerance mechanisms of sugarcane, two cultivars commonly used in Brazilian agriculture, RB867515 and RB855536, were submitted to salt stress for 48 days. Physiological parameters including net photosynthesis, water potential, dry root and shoot mass and malondialdehyde (MDA) content of leaves were determined. Control plants of the two cultivars showed similar values for most traits apart from higher root dry mass in RB867515. Both cultivars behaved similarly during salt stress, except for MDA levels for which there was a delay in the response for cultivar RB867515. Analysis of leaf macro- and micronutrients concentrations was performed and the concentration of Mn(2+) increased on day 48 for both cultivars. In parallel, to observe the effects of salt stress on protein levels in leaves of the RB867515 cultivar, two-dimensional gel electrophoresis followed by MS analysis was performed. Four proteins were differentially expressed between control and salt-treated plants. Fructose 1,6-bisphosphate aldolase was down-regulated, a germin-like protein and glyceraldehyde 3-phosphate dehydrogenase showed increased expression levels under salt stress, and heat-shock protein 70 was expressed only in salt-treated plants. These proteins are involved in energy metabolism and defense-related responses and we suggest that they may be involved in protection mechanisms against salt stress in sugarcane.
منابع مشابه
Effect of salicylic acid Effect of application of salicylic acid and potassium silicate on some morphological, physiological and biochemical traits in wheat (Triticum aestivum L.) grown under salt stress
Water and soil salinity on environmental agents limit plant growth and its productivity in Iran. In order to reduce the adverse effects of salinity on plants, different compounds are used. In this study, the effects of salicylic acid and potassium silicate were investigated on wheat plants under salt stress. A factorial experiment in a randomized complete block was conducted by applying 100 mM ...
متن کاملPhysiological and phytochemical changes induced by seed pretreatment with hydrogen peroxide in Artemisia sieberi under salt stress.
Seeds of medicinal plant Artemisia sieberi were pretreated with H2O2 (0, 10, 50, 90, and 140 µM) and grown in saline condition (0 and 150 mM NaCl) for one month. Phytochemical properties such as antioxidant capacity and also salt tolerance in the plans arising from H2O2 pretreated seeds under salt stress were examined. Results showed a decrease in H2O2 and malondialdehyde concentrations in the ...
متن کاملThe Effects of Humic Acid and Calcium on Morpho-Physiological Traits and Mineral Nutrient Uptake of Pistachio Seedling under Salinity Stress
The study was carried out to evaluate the effects of soil application of humic acid and calciumon morpho-physiological traits and Na+, Mg2+, Ca2+ uptake of Pistachio seedling (Akbari) grown under salt stress. A completely randomized design was used with four replications in greenhouse conditions. The experimental treatment consisted of four levels of humic acid (Bis humic) (0, 4, 8 and 12 gr k...
متن کاملAssessment of Root Growth and Physiological Responses of Four Bread Wheat (Triticum aestivum L.) Cultivars to Salinity Stress
Enlarged root systems that extend into the salt affected soil improve water and nutrient capture by plants and can increase plant productivity. In order to examine root system characteristics of four bread wheat cultivars contrasting in salt tolerance (Arg, Ofoq, Tajan and Morvarid) a greenhouse experiment was conducted with applying two salinity levels (0 and 150 mM NaCl) on plants grown in PV...
متن کاملEffect of salinity on some physiological and biochemical responses in the cyanobacterium Synechococcus elongatus
In this study, some physiological and biochemical responses of Synechococcus elongatus to salt stress were investigated. The cyanobactrium was grown in BG-11 medium under different concentrations of NaCl (0, 0.5, 1 M). The results indicated that the growth of S. elongatus was significantly inhibited under salt stress on days 5, 9 and 12. Protein content increased in S. elongatus on day 12 in pr...
متن کامل